


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, data, and basic tasks   
3 Data preparation and reduction Project 1 out 
4 Data preparation and reduction   
5 Data reduction and similarity metrics   
6 Dimension reduction 

7 Introduction to D3  Project 2 out 
8 Bias in visualization 
9 Perception and cognition   

10 Visual design and aesthetics   
11 Cluster and pattern analysis   
12 High-Dimensional data visualization: linear methods 
13 High-D data vis.: non-linear methods, categorical data  Project 3 out 
14 Principles of interaction   
15 Visual analytics and the visual sense making process 
16 VA design and evaluation 
17 Visualization of graphs and hierarchies 
18 Visualization of time-varying and time-series data Project 4 out 
19 Midterm   
20 Maps and geo-vis   
21 Computer graphics and volume rendering 
22 Techniques to visualize spatial (3D) data Project 4 halfway report due 
23 Scientific and medical visualization 
24 Scientific and medical visualization 
25 Non-photorealistic rendering 
26 Memorable visualizations, visual embellishments  Project 5 out 
27 Infographics design   
28 Projects Hall of Fame demos 



Feature vectors are typically high dimensional 

 this means, they have many elements  

 high dimensional space is tricky 

 most people do not understand it 

 why is that?  

 

 well, because you don’t learn to see high-D                                         

when your vision system develops  

 

Object permanence (Jean Piaget)  

 the ability to create mental pictures or remember objects and 

people you have previously seen  

 thought to be a vital precursor to creativity and abstract thinking 



The curse of dimensionality  

As n (number of dimensions )  ∞  

 Cube: side length l, diagonal d, volume V 

 V  ∞ for l > 1 

 V  0 for l < 1 

 V = 1 for l = 1 

 d  ∞ 

and very sparse 

 

  

and not here 

most points are here 



Essentially hypercube is like a “hedgehog”   

 

 

  



Points are all at about the same distance from one another 

 concentration of distances 

 fundamental equation (Bellman, ‘61) 

 

 

 

 so as n increases, it is impossible to distinguish two points by 

(Euclidian) distance  

• unless these points are in the same cluster of points 
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Space gets extremely sparse  

 with every extra dimension points get pulled apart further 

 distances become meaningless 

 

 

 

 

 

 

 

 

 

 



Space gets extremely sparse  

 with every extra dimension points get pulled apart further 

 distances become meaningless 

1D – points are very close 

2D – points spread apart 

3D – getting even sparser 
 
4D, 5D, … – sparseness grows further  



Indexing (and storage) also gets very expensive 

 exponential growth in the number of dimensions 

 

 

 

 

 

 

 

 

 

 4D: 65k cells   5D: 1M cells   6D: 16M cells    7D: 268M cells 

 keep a keen eye on storage complexity   

16 cells  

162 = 256 cells 163 = 4,096 cells 



Invented by Al Inselberg in the early 1990s 

Good way to see raw high-dimensional data  

 but there are shortcomings 

 we will see 



 

 

 

 

 

 

 

 

 

 

The N=7 data axes are arranged side by side  
 in parallel 



 

 

 

 

 

 

 

 

 

 

Hard to see the individual cars?  
 what can we do?  



 

 

 

 

 

 

 

 

 

 

Grouping the cars into sub-populations 
 we perform clustering 

 an be automated or interactive (put the user in charge) 



 

 

 

 

 

 

 

 

 

Computes the mean and superimposes it onto the lines  

 allows one to see trends  



PC With Illustrative Abstraction 

individual polylines 



PC With Illustrative Abstraction 

completely abstracted away 



PC With Illustrative Abstraction 

blended partially 



PC With Illustrative Abstraction 

all put together – three clusters 

[McDonnell and Mueller, 2008] 



Interaction is Key 



correlation                    r=-1.0                               r=0                                       r=1.0  



# points 

Fisher-z (corresponding to  r= 0, ±0.462, ±0.762, ±0.905)  



Fisher-z (corresponding to  r= 0, ±0.462, ±0.762, ±0.905)  

# points 

Li et al. found that twice as many correlation levels can be distinguished with scatterplots 
Information Visualization Vol. 9, 1, 13 – 30 



There are n! ways to order the n dimensions  

 how many orderings for 7 dimensions? 

 5,040  

 but since can see relationships across 3 axes a better estimate is 

n!/((n-3)! 3!) = 35 

 still a lot of axes orderings to try out  we need help 



Correlation  

 a statistical measure that indicates the extent to which two or 

more variables fluctuate together 
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Create a correlation matrix  

Run a mass-spring model  

Run Traveling Salesman on the correlation nodes 

Use it to order your parallel coordinate axes via TSP 

 

 

[Zhang and Mueller, 2012] 



• Vertices are attributes, edges are correlations 

• vertex: size determined by   
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑖,𝑗)

 𝐷−1
𝐷
𝑗=0  𝑗 ≠ 𝑖 

• edge: color/intensity  sign/strength of correlation 

 

all edges filtered by strength 

attribute centric subset of attributes 

[Zhang and Mueller, 2014] 





Correlation strength can often be improved by constraining a 

variable’s value range 

 this limits the derived relationships to this value range 

 such limits are commonplace in targeted marketing, etc.  

no bracketing lower price range higher price range 

[Zhang and Mueller, 2014] 



Developed by [Kosara et al. TVCG, 2006] 

 

Parallel coordinates for categorical data 

 for example, census and survey data, inventory, etc.  

 data that can be summed up in a cross-tabulation 

 

Example 

 Titanic dataset 

 what can we see here? 



Fused dataset of 50 US colleges 

US News: academic rankings 

College Prowler: survey on                                                                 

campus life attributes 

 

 





Scene:  

 a meeting of sales executives of a large corporation, Vandelay 

Industries 

 

Mission: 

 review the strategies of their various sales teams 

 

Evidence: 

 data of three sales teams with a couple of hundred sales people 

in each team 

  



Meet Kate, a sales analyst in the meeting room: 
 

“OK…let’s see, cost/won lead is nearby and it has a positive correlation 

with #opportunities but also a negative correlation with #won leads” 

Kate 



“Let’s go and make a revealing route!” 

 she uses the mouse and designs the route shown 

 she starts explaining the data like a story ...  



“Let’s go and make a revealing route!” 

 she uses the mouse and designs the route shown 

 she starts explaining the data like a story ...  



 

 

 

 

 

Kate notices something else: 

 now looking at the red team 

 there seems to be a spread in effectiveness among the team 

 the team splits into three distinct groups 

She recommends: “Maybe fire the least effective group or at 

least retrain them” 

 

 

 

 

 

 

 

 

 



Projection of the data items into a bivariate basis of axes 



How does 2D projection work in practice? 

 N-dimensional point x ={x1. x2, x3, … xN}  

 a basis of two orthogonal axis vectors defined in N-D space  

                a = {a1. a2, a3, … aN} 

                b = {b1. b2, b3, … bN}  

 a projection {xa, xb} of x into the 2D basis spanned by {a, b} is:  

                xa = a · xT   

                xb = b · xT  

        where · is the dot product, T is the transpose 

a a 

b b 



Projection causes inaccuracies 

 close neighbors in the projections may not be close neighbors in 

the original higher-dimensional space 

 this is called projection ambiguity  

a a 

b b 



Appropriate for the display of bivariate relationships 



What to do when there are more than two variables? 

 arrange multivariate relationships into scatterplot matrices 

 not overly intuitive to perceive multivariate relationships 





Scatterplot version of parallel 

coordinates 

 distributes n(n-1) bivariate 

relationships over a set of tiles 

 for n=4 get 16 tiles 

 can use n(n-1)/2 tiles 

 

For even moderately large n: 

 there will be too many tiles 

 

Which plots to select?  

 plots that show correlations well 

 plots that separate clusters well 

 



Several metrics, a good one is Distance Consistency (DSC) 

 

 

 

 

 

 

 

 

 measures how “pure” a cluster is 

 pick the views with highest normalized DSC 

 

 

 

 

 

 

 

 

 

 

 

M. Sips et al., Computer Graphics Forum, 28(3): 831–838, 2009 

bad 

OK 

= 



Favors clusters that are compact and are well isolated  



Plots data points and dimension axes into a single visualization 

 uses first two PCA vectors as the basis to project into  

 find plot coordinates [x] [y] 

          for data points: [PCA1 · data vector] [PCA2 · data vector] 

          for dimension axes: [PCA1[dimension]] [PCA2[dimension]] 

 

 

 

 

 

 

 scatter plot biplot 



See data distributions into the context of their attributes 



See data points into the context of their attributes 

 



Do be aware that the projections may not be fully accurate 

 you are projecting N-D into 2D by a linear transformation 

 if there are more than 2 significant PCA vectors then some 

variability will be lost and won’t be visualized 

 remote data points might project into nearby plot locations 

suggesting false relationships  projection ambiguity 

 always check out the PCA scree plot to gauge accuracy  

 

 

OK OK be careful 



Also called multivariate scatterplot 

 biplot-axes length vis replaced by graphical design 

 less cluttered view  

 but there’s more to this ….. 



Decomposes high-D data spaces into lower-D subspaces by 

 clustering 

 classification 

 reducing clusters to intrinsic dimensionality via local PCA 

 

Allows users to interactively explore these lower-D subspaces 

 explore them as a chain of 3D subspaces 

 transition seamlessly to adjacent 3D subspaces on demand  

 save observations as you go (and return to them just as well) 

 

 











Coordinate system based on axes positioned in a star 

 a point P is vector sum of all axis coordinates  

Interactions 

 axis rescaling, rotation 

 reveal correlations 

 resolve plotting ambiguities 

 

 


=

=
m

i

iicdOP
1



[E. Kandogan  SIGKDD 2001] 



Operations defined on Star Coords 

 scaling changes contribution to 

resulting visualization 

 axis rotation can visualize correlations  

 also used to reduce projection 

ambiguities 

 

 



Similar to Star Coordinates 

 uses a spring model  

 difference is normalization by sum of values 

  

 

 

[P. Hoffman et al.   VIS 1997] 
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Figure by: Rubio-Sanchez et al.   TVCG 2015 



Optimize 

 correlation-based attribute placement on circle using TSP  

 samples placed iteratively into circle using similarity constraints  

 

standard RadViz 

[Cheng and Mueller, Pacific Vis 2015] 

optimized RadViz 



Equivalent to a parallel coordinates plot, with the axes 

arranged radially 

 each star represents a single observation 

 can show outliers and commonalities nicely 

 

Disadvantages 

 hard to make trade-off decisions 

 distorts data to some extent when                                                                         

lines are filled in  

 



Describe scatterplot features by graph theoretic measures 

 mostly built on minimum spanning tree 

 can be used to summarize large sets of scatterplots   



Use scagnostics to quickly 

survey 1,000s of 

scatterplots 

 compute scagnostics 

measures 

 create scatterplot matrix 

of these measures 

 each scatterplot is a 

point  

 



All of these scatterplot displays share the following 

characteristics 

 allow users to see the data points in the context of the variables 

 but can suffer from projection ambiguity 

 some offer interaction to resolve some of these shortcomings  

 but interaction can be tedious  

 

Are there visualization paradigms that can overcome these 

problems? 

 yes, algorithms that optimize the layout to preserve distances or 

similarities in high-dimensional space 

 as opposed to the linear schemes we discussed so far, these are 

non-linear embedding algorithms 



MDS is for irregular structures 
 scattered points in high-dimensions (N-D) 

 adjacency matrices 

 

Maps the distances between observations from N-D into low-
D (say 2D) 

 attempts to ensure that differences between pairs of points in this 
reduced space match as closely as possible 

 

The input to MDS is a distance (similarity) matrix  
 actually, you use the dissimilarity matrix because you want similar 

points mapped closely  

 dissimilar point pairs will have greater values and map father 
apart  





MDS turns a distance matrix into a network or point cloud  
 correlation, cosine, Euclidian, and so on 

 

Suppose you know a matrix of distances among cities 

 

 

 

 

 

 

 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 











𝐸 = 𝐷𝑖𝑗 − 𝑑𝑖𝑗
2

𝑁

𝑖<𝑗

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Distance (similarity) metric  

 Euclidian distance (best for data) 

 Cosine distance (best for data) 

 |1-correlation| distance (best for attributes) 

 use 1-correlation to move correlated attribute points closer 

 use | | if you do not care about positive or negative correlations 

 





by: [J. Tenenbaum, V. de Silva, J. Langford, Science, 2000] 

 

 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 
 noisy points could be averaged first and projected onto the manifold 

 

Algorithm 
 construct neighborhood graph G  (B) 

 for each pair of points in G compute the shortest path distances  geodesic 
distances 

 fill similarity matrix with these geodesic distances 

 embed (layout) in low-D (2D) with MDS  (C) 

 visualize it like an MDS layout 

 



t-Distributed Stochastic Neighbor Embedding  

 innovated by [l. van der Maaten and G. Hinton, 2008] 

 

Works as a two-stage approach 

1. Construct a probability distribution over pairs of high-D points 

based on similarity 

2. Define a similar probability 

       distribution over the points  

       in the low-D map 

 

 

                               



Introduced by [T. Kohonen et al. 1996]  

 unsupervised learning and clustering algorithm 

 has advantages compared to hierarchical clustering 

 often realized as an artificial neural network 

 

SOMs group the data  

 perform a nonlinear projection from N-dimensional input space 

onto two-dimensional visualization space 

 provide a useful topological arrangement of information objects 

in order to display clusters of similar objects in information space 

 



Map a dataset of 3D color vectors into a 2D plane 

 assume you have an image with 5 colors  

 want to see how many there are of each 

 compute an SOM of the color vectors  

 

SOM 



Create array and connect all elements to the N input vector 
dimensions  

 shown here: 2D vector with 44 elements   

 initialize weights  

 

For each input vector chosen at random 
 find node with weights most like the input vector 

 call that node the Best Matching Unit (BMU) 

 find nodes within neighborhood radius r of BMU  

• initially r is chosen as the radius of the lattice 

• diminishes at each time step 

 adjust the weights of the neighboring nodes to                             
make them more like the input vector 

• the closer a node is to the BMU, the more its weights get altered 





Height represents density or number of documents in the region 

Invented at Pacific Northwest National Lab (PNNL) 



But…. 

Japanese cars 

European cars 

US cars 





Tuition 

Academic Score 

Athletics 

no dream school here: good athletics, 
 low tuition, high academic score 

tuition <  
financial  
means  

tuition >  
financial means  

1 2 

3 



Best of both worlds 

 similarity layout of the data based on vector similarity 

 similarity layout of the attributes based on pairwise correlation  

data attributes data + attributes 

          
[Cheng and Mueller, TVCG 2016] 
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You will need to use correspondence analysis (CA) 

 CA is PCA for categorical variables 

 related to factor analysis 

 



Example: 

 

 

 

 

 

 

There are two high-D spaces 

 4D (column) space spanned by smoking habits – plot staff group 

 5D (row) space spanned by staff group – plot smoking habits 

Are these two spaces (the rows and columns) independent ? 

 this occurs when the 2  statistics of the table is insignificant 

 

 

 

 

 

 

 

 

 

more info 

http://www.uta.edu/faculty/sawasthi/Statistics/stcoran.html


Let’s do some plotting 

 compute distance matrix of the rows CCT 

 compute Eigenvector matrix U and the Eigenvalue matrix D 

 sort eigenvectors by values, pick two major vectors, create 2D plot 

                                                            -- senior employees most similar 

                                                                 to secretaries 

                                                                 

x 

--> distance matrix 
of employees 



Next:  

 compute distance matrix of the columns CTC 

 compute Eigenvector matrix V (gives the same Eigenvalue matrix D) 

 sort eigenvectors by value 

 pick two major vectors 

 create 2D plot of smoking categories 

 

Following (next slide): 

 combine the plots of U and V        

 if the 2  statistics was significant we should see some dependencies  

x 

--> distance matrix 
of smoking habits 



 

 

 

 

 

 

 

 

 

 

Interpretation sample (using the 2  frequentist mindset) 

 relatively speaking, there are more non-smoking senior employees 



 

 

 

 

 

 

 

 

 

Plot would now show 193 cases and 9 variables   



Extension where there are more than 2 categorical variables 

 

 

 

 

 

 

 

 

 

Let’s call it matrix X 

 

 

 

 

 

 



Compute X’X to get the Burt Table 

 

 

 

 

 

 

 

 

Compute Eigenvectors and Eigenvalues 
 keep top two Eigenvectors/values 

 visualize the attribute loadings of these two Eigenvectors into the 
Burt table plot  (the loadings are the coordinates) 



Results of a survey of car owners and car attributes 

 

 

 

 

 

 

 

 

 

 

 more info see here 

https://v8doc.sas.com/sashtml/stat/chap24/sect27.htm


 

 

 

 

 

Summary table: 



 

 

 

 

Most influential column points 

(loadings): 



 

 

 

 

Burt table plot: 



Top-right quadrant:  

 categories single, single with kids, 1 income, and renting a home 

are associated 

 

Proceeding clockwise: 

 the categories sporty, small, and Japanese are associated  

 being married, owning your own home, and having two incomes 

are associated  

 having children is associated with owning a large American family 

car 

 

Such information could be used in market research to identify 

target audiences for advertisements 

 



A Gartner Magic Quadrant is 
a culmination of research in a 
specific market, providing a 
wide-angle view of the 
relative positions of the 
market's competitors 

 

 

This concept can be used for 
other dimension pairs as well 

 essentially require to think 
of a segmentation of the 4 
quadrants 






